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Abstract. Motivated by the recent experiment by Schusteret al (Schuster R, Buks E, Heiblum
M, Mahalu D, Umansky V and Shtrikman H 1997Nature 385 417), we study a four-terminal
phase-coherent system, each arm having a quantum dot embedded in it (dot 1 for studying and
dot 0 for reference). Using the nonequilibrium-Green-function method, the open-circuit collector
voltagev4 is derived. We find the following features. (1) The phase behaviours are similar for
all of the resonance peaks. (2) In a single resonance peak, the phaseϕ increases byπ on a scale
of about the half-peak-width0w . (3) An abrupt phase drop, byπ , occurs near the point half
way between two consecutive peaks. These results agree well with experiment. We attribute
the characteristic (3) to the off-diagonal linewidth of dot 1, which is a single-electron effect.
In addition, the crossover of the phase behaviour in going from the four-terminal system to a
two-terminal system is studied. Finally, another manifestation of this off-diagonal linewidth is
also discussed.

1. Introduction

For very small systems, such as quantum dots, electrons travelling through can maintain their
phase coherence. In order to characterize the transport properties fully, it is very important
to measure the phase change as an electron passes through such small systems. Yacobyet al
have measured the phase change of an electron passing through a quantum dot by using a
two-terminal phase-coherent set-up [1]. They obtained the following results. (1) There is
an abrupt phase increase, byπ , on passing a single resonance peak. (2) The transmission
amplitudes of the successive resonance peaks are in phase. Because of the limitation of
having two terminals, they were not able to observe continuous phase variation. In fact, it
is well known that for a two-terminal phase-coherent system, the phase can only take two
values (either 0 orπ ); no continuous phase variation happens. This had been predicted
theoretically about ten years ago by Büttiker, on the basis of time-reversal invariance and
current conservation [2]. Since the experiment by Yacobyet al [1], several theoretical
studies have been presented [3–6]. Hackenbroichet al explained the abrupt phase increase
by π well by treating the intra-dot electron–electron interaction within a self-consistent
mean-field approximation [3, 4]. Bruderet al investigated nonlinear conductance and
considered Kondo-like correlations, and also explained the characteristic (1) for the linear
regime [5].
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Recently, Schusteret al [7] reported the first successful measurement of a continuous
phase variation of the electron transmission amplitude through a quantum dot by using a
novel experimental set-up, a four-terminal phase-coherent system threaded by a magnetic
flux 8. They found three striking features.

(1) The phase behaviours are similar for all of the resonance peaks.
(2) The phase rises by almostπ in a single resonance peak on a scale of about the

half-peak-width0w.
(3) A sharp phase drop, byπ , occurs near the halfway point between two consecutive

peaks on a scale much smaller than0w or kBT (T is the temperature).

Feature (2) is well consistent with the Breit–Wigner formula [8], but feature (3) is in clear
contradiction with it. Oreg and Gefen proposed a mechanism in which an inherently finite-
temperature many-body effect causes a phase drop [9], but a complete explanation for
feature (3) remains to be found.

Figure 1. A schematic diagram of the model system: the dark regions represent the reservoirs,
dot 1 is coupled to lead 1 and lead 4, dot 0 is coupled to all of the leads, and the system is
threaded by a flux8.

In this paper our main goal is to explain the results of the experiment of Schusteret al
[7], in particular, the characteristic (3). We consider a four-terminal phase-coherent system,
shown schematically in figure 1, in which each arm has a quantum dot embedded in it
(dot 1 for studying and dot 0 for reference), and which is threaded by a magnetic flux8.
Although the model system under consideration is not the one used in the experiment of
reference [7], under certain conditions (see section 2 below), dot 0 approximately plays the
role of a wave-guide-like wire, and the model system is close to the experimental situation.
By using the nonequilibrium-Green-function method, we derive the collector currentI4.
Then, by using the open-circuit condition (I4 = 0), the open-circuit collector voltagev4 is
obtained. The phase behaviour is studied in detail, and we find that it is in good agreement
with the experiment of Schusteret al [7]. In particular, we can obtain the sharp phase
drop near the halfway point between two consecutive peaks, which we attribute to the off-
diagonal linewidth of dot 1. It should be emphasized that this mechanism is completely a
single-electron effect. In addition, the crossover from a continuous phase increase of the
four-terminal system to an abrupt phase increase of the two-terminal system is also studied.
Finally, we predict that another manifestation of this off-diagonal linewidth may emerge in
a strong-tunnelling situation.

The outline of this paper is as follows. In section 2, we present the model and derive the
formula for the collector currentI4 by the Keldysh nonequilibrium-Green-function method.
The main results of our theory for the four-terminal model system, including the open-circuit
collector voltagev4 and the phase behaviour, are presented in section 3. The crossover of
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the phase behaviour in going from the four-terminal system to the two-terminal system is
discussed in section 4. Another interesting manifestation of the off-diagonal linewidth is
predicted theoretically in section 5. Finally, a brief summary is given in section 6.

2. The model and the collector current

The system under consideration is a four-terminal phase-coherent system with one quantum
dot embedded in each arm, and threaded by a magnetic flux8. This system can be described
by the following Hamiltonian:

H =
∑
k,n

εkna
†
knakn + ε0b

†
0b0+

∑
i

εic
†
i ci +

∑
i,j (i 6=j)

U

2
c
†
i cic

†
j cj

+
[∑
k,n

wkna
†
knb0+

∑
k,j

v1
kje

iφa
†
k1cj +

∑
k,j

v4
kj a
†
k4cj + HC

]
(1)

wherea†kn (akn) is the creation (annihilation) operator for an electron in leadn, n = 1, 2, 3, 4
corresponding to lead 1–lead 4, respectively. The second term describes dot 0, in which
only a single state is considered. The third and the fourth terms are for dot 1 with multiple
energy levels and the Coulomb interactionU between the electrons. The last term describes
the tunnelling between the dots and the leads, where lead 2 and lead 3 are only coupled to
dot 0 (see figure 1). To account for the system threaded by the magnetic flux8, the matrix
element connecting dot 1 and lead 1 is set asv1

kje
iφ [3, 4], whereφ = 2π8/80 andv1

kj is
the matrix element without the magnetic field.

The collector current flowing from the system into lead 4 can be calculated from the
evolution of the total number operator of the electrons in lead 4 [10, 11],

N4 =
∑
k

a
†
k4ak4.

Then one finds

I4 = e〈Ṅ4〉 = −ie〈[N4, H ]〉 = −2eRe
∑
k

wk4G
<
0,k4(t, t)− 2eRe

∑
k,i

v4
kiG

<
i,k4(t, t) (2)

where the Green functionsG<
0,k4(t, t

′) andG<
i,k4(t, t

′) are defined as

G<
0,k4(t, t

′) ≡ i〈a†k4(t
′)b0(t)〉 G<

i,k4(t, t
′) ≡ i〈a†k4(t

′)ci(t)〉.
With the help of the Dyson equation, the Green functionG<

α,k4(t, t
′) (α = 0, i) can be

expressed as

G<
α,k4(t, t

′) =
∫

dt1

{
w∗k4

[
Gr
α0(t, t1)g

<
k4(t1, t

′)+G<
α0(t, t1)g

a
k4(t1, t

′)
]

+
∑
j

v4∗
kj

[
Gr
αj (t, t1)g

<
k4(t1, t

′)+G<
αj (t, t1)g

a
k4(t1, t

′)
] }

(3)

whereg<k4, gak4 are the exact Green functions of the electron in lead 4 without coupling
between the leads and the dots; the Green functionsGr

αβ(t, t1) andG<
αβ(t, t1) (α = 0, i;

β = 0, j ) are defined as(
Gr

00(t, t1) Gr
0j (t, t1)

Gr
i0(t, t1) Gr

ij (t, t1)

)
≡ −iθ(t − t1)

( 〈{b0(t), b
†
0(t1)}〉 〈{b0(t), c

†
j (t1)}〉

〈{ci(t), b†0(t1)}〉 〈{ci(t), c†j (t1)}〉
)

(4)(
G<

00(t, t1) G<
0j (t, t1)

G<
i0(t, t1) G<

ij (t, t1)

)
≡ i

( 〈b†0(t1)b0(t)〉 〈c†j (t1)b0(t)〉
〈b†0(t1)ci(t)〉 〈c†j (t1)ci(t)〉

)
. (5)
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Substituting the expressions forG<
0,k4(t, t) andG<

i,k4(t, t) into (2), the sum overk can
be changed into an integral,

∫
dε ρ4(ε), whereρ4(ε) =

∑
k δ(ε−εk4) is the density of states

of lead 4. Then the collector currentI4 becomes

I4 = 2e Im
∫

dε

2π

{
f4(ε)

[
04

0G
r
00(ε)+

∑
j

04
0jG

r
j0(ε)+

∑
i

04
i0G

r
0i (ε)+

∑
i,j

04
ijG

r
ji(ε)

]

+ 1

2

[
04

0G
<
00(ε)+

∑
j

04
0jG

<
j0(ε)+

∑
i

04
i0G

<
0i (ε)+

∑
i,j

04
ijG

<
ji(ε)

]}

≡ 2e Im
∫

dε

2π

{
f4(ε)Tr

[
Γ4(ε)Gr (ε)

]+ 1

2
Tr
[
Γ4(ε)G<(ε)

]}
(6)

in which f4(ε) is the Fermi distribution function of the electrons in lead 4, andΓ4(ε) is a
matrix linewidth function defined as

Γ4(ε) =
(
04

0 04
0j

04
i0 04

ij

)
=
∑
k

2πδ(ε − εk4)

(
w∗k4wk4 w∗k4v

4
kj

v4∗
ki wk4 v4∗

ki v
4
kj

)
= 2πρ4(ε)

(
w∗4(ε)w4(ε) w∗4(ε)v

4
j (ε)

v4∗
i (ε)w4(ε) v4∗

i (ε)v
4
j (ε)

)
. (7)

It should be stressed that in this work we will retain the off-diagonal linewidths

0nij ≡
∑
k

2πδ(ε − εkn)vn∗ki vnkj (n = 1, 4)

which are usually neglected, as in reference [12] and [13]. It turns out that these off-
diagonal linewidths of the quantum dot play an essential role in producing the sharp phase
drop mentioned above. In equation (6), the matrix Green functionGα(ε) (α = r, <) is the
Fourier transform of the matrix Green functionGα(t, 0) defined by

Gα(ε) =
(
Gα

00(ε) Gα
0j (ε)

Gα
i0(ε) Gα

ij (ε)

)
=
∫

dt eiεt

(
Gα

00(t, 0) Gα
0j (t, 0)

Gα
i0(t, 0) Gα

ij (t, 0)

)
≡
( 〈〈b0|b†0〉〉α 〈〈b0|c†j 〉〉α
〈〈ci |b†0〉〉α 〈〈ci |c†j 〉〉α

)
. (8)

In the last line of equation (8), the Green functions are expressed in the forms〈〈X|Y 〉〉α
(α = r, <), whereX, Y denoteb0 or cj . These forms will be convenient for the following
calculation.

In order to derive the collector currentI4, we have to calculate two traces: Tr[Γ4Gr ]
and Tr[Γ4G<]. First, let us calculate Tr[Γ4Gr ]. By using the equation of motion (EOM)
ε〈〈X|Y 〉〉r = 〈〈[X,H ]|Y 〉〉r + 〈{X, Y }〉, we have

(ε − ε0)〈〈b0|b†0〉〉r = 1+
∑
k,n

w∗kn〈〈akn|b†0〉〉r (9)

(ε − εi)〈〈ci |b†0〉〉r = U
∑
j (j 6=i)

〈〈cic†j cj |b†0〉〉r +
∑
k

v1∗
ki e−iφ〈〈ak1|b†0〉〉r +

∑
k

v4∗
ki 〈〈ak4|b†0〉〉r .

(10)

For the closure of the EOM, the higher-order two-particle Green function〈〈cic†j cj |b†0〉〉r
must be decoupled. We make the following decoupling approximation [14]:

〈〈cic†j cj |b†0〉〉r = Nj 〈〈ci |b†0〉〉r (11)

whereNj is the occupation number of statej of dot 1. This decoupling scheme is equivalent
to the mean-field approximation, and the only effect of the electron–electron interaction is
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to separate the neighbouring resonances by a spacing ofU/e [3, 4]. The new retarded
Green functions〈〈akn|b†0〉〉r (n = 1, 2, 3, and 4) in equations (9) and (10) can be obtained
from Dyson’s equation:

〈〈ak1|b†0〉〉r = 〈〈ak1|a†k1〉〉r0
{
wk1〈〈b0|b†0〉〉r +

∑
j

v1
kje

iφ〈〈cj |b†0〉〉r
}

〈〈akn|b†0〉〉r = 〈〈akn|a†kn〉〉r0wkn〈〈b0|b†0〉〉r for n = 2, 3

〈〈ak4|b†0〉〉r = 〈〈ak4|a†k4〉〉r0
{
wk4〈〈b0|b†0〉〉r +

∑
i

v4
ki〈〈ci |b†0〉〉r

} (12)

where〈〈akn|a†kn〉〉r0 = 1/(ε − εkn + i0+) (n = 1, 2, 3, and 4) are the exact retarded Green
functions in leadn without coupling between the leads and the dots. We substitute the
expressions for〈〈ak4|b†0〉〉r into equations (9) and (10), and, as in most of the literature,
make two further simplifications.

(1) We make the wide-bandwidth approximation [15], i.e. all of the linewidths (0n0, Γ1,
andΓ4) are treated as constants, independent ofε. Then one has∑

k

w∗knwkn〈〈akn|a†kn〉〉r0 = −
i

2
0n0

where

0n0 ≡
∑
k

2πδ(ε − εkn)w∗knwkn.

(2) We let the left-hand and right-hand barriers be symmetric, i.e. letΓ1 = Γ4 ≡ 1
2Γ.

Then equations (9) and (10) become(
ε − ε0+ i

2

∑
n

0n0

)
〈〈b0|b†0〉〉r = 1+ A

∑
i

04
0i〈〈ci |b†0〉〉r (13)

(ε − εi − UN ′i )〈〈ci |b†0〉〉r = −A∗04
i0〈〈b0|b†0〉〉r − i

∑
j

0ij 〈〈cj |b†0〉〉r . (14)

Here

A = − i

2
(1+ eiφ) N ′i =

∑
j (j 6=i)

Nj .

From equation (14), one easily finds that∑
i

04
0i〈〈ci |b†0〉〉r = −A∗

∑
i

04
0i0

4
i0

ε − εi − UN ′i
〈〈b0|b†0〉〉r − i

∑
ij

04
0i0

4
ij

ε − εi − UN ′i
〈〈cj |b†0〉〉r . (15)

Notice that04
0i0

4
i0 = 04

00
4
ii and04

0i0
4
ij = 04

0j0
4
ii , so

∑
i 0

4
0i〈〈ci |b†0〉〉r can be obtained as∑

i

04
0i〈〈ci |b†0〉〉r = −A∗B04

0〈〈b0|b†0〉〉r (16)

where

B(ε) ≡ (1/2)
/[(∑

i

0ii

ε − εi − UN ′i

)−1

+ i/2

]
. (17)
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In fact B(ε) is just the amplitude of transmission through dot 1 with the off-diagonal
linewidth 0ij taken into consideration. On combining equations (16) and (13),〈〈b0|b†0〉〉r is
obtained straightforwardly:

〈〈b0|b†0〉〉r = 1
/(

ε − ε0+ i

2

∑
n

0n0 + |A|2B04
0

)
(18)

Now let us calculate
∑

i 0
4
i0〈〈b0|c†i 〉〉r and

∑
ij 0

4
ij 〈〈cj |c†i 〉〉r . By using the equation of

motion−ε〈〈X|Y 〉〉r = 〈〈X|[Y,H ]〉〉r − 〈{X, Y }〉, and the Dyson equation, one finds that

(ε − εi − UN ′i )〈〈b0|c†i 〉〉r =
∑
k

v1
kie

iφ〈〈b0|a†k1〉〉r +
∑
k

v4
ki〈〈b0|a†k4〉〉r (19)

(ε − εi − UN ′i )〈〈cj |c†i 〉〉r = δij +
∑
k

v1
kie

iφ〈〈cj |a†k1〉〉r +
∑
k

v4
ki〈〈cj |a†k4〉〉r (20)

〈〈X|a†k1〉〉r = 〈〈ak1|a†k1〉〉r0
{
w∗k1〈〈X|b†0〉〉r +

∑
j

v1∗
kj e−iφ〈〈X|c†j 〉〉r

}
(21)

〈〈X|a†k4〉〉r = 〈〈ak4|a†k4〉〉r0
{
w∗k4〈〈X|b†0〉〉r +

∑
j

v4∗
kj 〈〈X|c†j 〉〉r

}
. (22)

X, Y in equations (21) and (22) denoteb0 or cj , Substituting equations (21) and (22) into
equations (19) and (20), we have

(ε − εi − UN ′i )〈〈b0|c†i 〉〉r = A04
0i〈〈b0|b†0〉〉r − i

∑
j

04
ji〈〈b0|c†j 〉〉r (23)

(ε − εi − UN ′i )〈〈cj |c†i 〉〉r = δij + A04
0i〈〈cj |b†0〉〉r − i

∑
l

04
li〈〈cj |c†l 〉〉r . (24)

After some algebraic manipulations, and noticing that: (1)04
i00

4
0i = 04

00
4
ii ; (2) 04

ji0
4
i0 =

04
j00

4
ii ; (3) 04

ij0
4
li = 04

ii0
4
lj , we obtain∑

i

04
i0〈〈b0|c†i 〉〉r = AB04

0〈〈b0|b†0〉〉r (25)

and ∑
ij

04
ij 〈〈cj |c†i 〉〉r =

(
ε0− ε0+ i

2

∑
n

0n0

)
B〈〈b0|b†0〉〉r . (26)

By combining equations (16), (18), (25), and (26), one finally obtains the trace Tr[Γ4Gr ]
as

Tr[Γ4Gr (ε)] = 04
0〈〈b0|b†0〉〉r +

∑
i

04
0i〈〈ci |b†0〉〉r +

∑
i

04
i0〈〈b0|c†i 〉〉r +

∑
ij

04
ij 〈〈cj |c†i 〉〉r

=
[
04

0 + (A− A∗)B04
0 +

(
ε − ε0+ i

2

∑
n

0n0

)
B

]
Gr

00. (27)

The next step is to calculate the trace Tr[Γ4G<]. We use the Keldysh equation
G< = GrΣ<Ga, where Ga is the advanced Green function andΣ< is the self-energy,
which can be easily obtained under the wide-bandwidth approximation:

Σ<(ε) = if1(ε)

(
01

0 01
0ie

iφ

01
j0e−iφ 01

ji

)
+ if2(ε)

(
02

0 0
0 0

)
+ if3(ε)

(
03

0 0
0 0

)
+ if4(ε)

(
04

0 04
0i

04
j0 04

ji

)
. (28)
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Substituting the expression for the self-energyΣ< into G<, one immediately sees that the
trace Tr[Γ4G<] is a linear function of ifn(ε) (n = 1, 2, 3, and 4). Noticing that04

0, 04
0j ,

04
i0, and04

ij obey the above-mentioned relations, the coefficients of ifn(ε) can be calculated
one by one, and the trace Tr[Γ4G<] is obtained:

Tr[Γ4G<] = if1(ε)

∣∣∣∣∣04
0 − 2A∗B04

0 +
(
ε − ε0+ i

2

∑
n

0n0

)
Be−iφ

∣∣∣∣∣
2 ∣∣Gr

00

∣∣2
+ if2(ε)0

2
00

4
0|1− A∗B|2

∣∣Gr
00

∣∣2+ if3(ε)0
3
00

4
0|1− A∗B|2

∣∣Gr
00

∣∣2
+ if4(ε)

∣∣∣∣∣04
0 + (A− A∗)B04

0 +
(
ε − ε0+ i

2

∑
n

0n0

)
B

∣∣∣∣∣
2 ∣∣Gr

00

∣∣2 . (29)

Finally, substituting these two traces, Tr[Γ4Gr ] and Tr[Γ4G<], into equation (6), and
noticing thatB∗ − B = 2i|B|2 and04

ij0
4
lm = 04

im0
4
lj , the formula for the collector current

I4 can be expressed as follows:

I4 = e
∫

dε

2π

[ ∑
i=1,2,3

Ti4(fi − f4)

]
. (30)

Formally, equation (30) is the multiple-probe Büttiker formula, whereTi4(ε) (i = 1, 2, 3)
is the transmission probability including all of the phase information:

T14 =
∣∣∣∣∣04

0 − 2A∗B04
0 +

(
ε − ε0+ i

2

∑
n

0n0

)
Be−iφ

∣∣∣∣∣
2 ∣∣Gr

00

∣∣2
Ti4 = 0i004

0|1− A∗B|2
∣∣Gr

00

∣∣2 (i = 2, 3). (31)

It should be emphasized that we have considered all of the linewidths of dot 1, including
the diagonal linewidth0ii and the off-diagonal linewidths0ij which are usually neglected,
as in the previous studies [12, 13]. Since the0ij are not independent of one another, they
satisfy0ij0lm = 0im0lj , 0ij = 0∗ji , |0ij |2 = 0ii0jj , so only the diagonal linewidths0ii
appear in equations (30), (31), and in the expression for the transmission amplitude through
dot 1,B (see equation (17)).

The occupation number for the statei of dot 1,Ni , should usually be calculated self-
consistently. But for simplicity, here we neglect the coupling with dot 0, and thus we
have

Ni =
∫

dε

2π

f10
1
ii + f40

4
ii

(ε − εi − UN ′i )2+ (0ii)2/4
. (32)

Equation (30) is the central formula of this work.

3. The main results and the comparison with experiment

In this section, we will study the phase behaviour and some other properties of the model
four-terminal system. To imitate the experiment of Schusteret al [7], we choose our
parameters with (a) min(01

0, 0
2
0, 0

3
0, 0

4
0) � max(01

1, 0
4
1, kBT ) and (b) ε0 far from the

chemical potentialµ, i.e. |ε0 − µi | � max(01
1, 0

4
1, kBT ). Under these conditions, the

amplitude of transmission through dot 0 is approximately a constant over a range of several
kBT , and04

1 is aroundµ. Therefore, dot 0 in our model can be approximately considered
as a wave-guide-like wire, and the system is reduced to a four-terminal system with only
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one dot (dot 1) in an arm. Also, (c) we letµ2 = µ3 = 0, to describe the connections of
lead 2 and lead 3 to the base.

Figure 2. The emitter conductance dI1/dv1 and the collector conductance dI4/dv1 versusvp
for εi = −vp + (i − 1)1ε and8 = 0. The parameters chosen are:T = 0, 01

0 = 04
0 = 500,

02
0 = 03

0 = 200,01
ii = 04

ii = 0.5, ε0 = 100,µ1 = µ2 = µ3 = µ4 = 0. We assume that dot 1
has ten states with1ε = 2.5 andU = 0. The resonance peaks from the fourth to the seventh
are shown in the figure.

3.1. The emitter conductance and the collector conductance

On the basis of equation (30), we first calculate the dependence of the emitter conductance
dI1/dv1 (dI1/dv1 = −dI4/dv4 due to the symmetry of the system) and the collector
conductance dI4/dv1 on the gate voltagevp applied to dot 1 forµ1 = µ4 = 0 (shown
in figure 2). All of the numerical calculations are performed in units for which ¯h = e = 1.

In figure 2, a series of the resonance peaks appear. Notice that the magnitudes of
dI1/dv1 and dI4/dv1 are exactly the same at complete resonance, which means that all of
the electrons emitted from lead 1 will flow into lead 4, due to the fact that when dot 1 is in
resonance, its transmission probability is 1 and the resistance is zero.

3.2. The open-circuit collector voltage

Now we consider the open-circuit case. LetI4 = 0 in equation (30); the open-circuit
collector voltagev4 can be obtained in the linear response regime as

v4

v1
=
(∫

dε T14(∂f/∂ε)

)/(∫
dε

[ ∑
i=1,2,3

Ti4

]
(∂f/∂ε)

)
. (33)

From equation (33) one finds that the open-circuit collector voltage,v4, is smaller
than the emitter voltagev1 but larger than the base voltages without any restriction on
the temperatureT , the magnetic flux8, the gate voltagevp, the linewidths0, and the
parameters of the dots (ε0, εi , andU ). This means that the voltage of the open-circuit
collector, v4, is neither the highest nor the lowest among the four voltages of the leads;
otherwise the open-circuit conditionI4 = 0 cannot be satisfied. This is quite reasonable
physically.

The curves forv4/v1 versus the gate voltagevp for 0ii independent of the statei are
shown in figure 3(a); they exhibit a series of the resonance peaks on a large background
contributed from the reference path. These peaks are slightly asymmetric, and the maximum
value ofv4/v1 is 1 at complete resonance. If finite temperature is considered, the resonance
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Figure 3. (a) v4/v1 versusvp for 8 = 0; (b) the phaseϕ versusvp . For (a) and (b), the
parameters are the same as for figure 2. (c)v4/v1 versus8 from point 1 to point 3 in (a),
corresponding tovp = 9.2, 10, 10.7, respectively.

peaks will be broadened and lowered. Notice that the half-peak-width0w is not equal to the
linewidth of dot 1,0ii . In fact, the coupling of dot 1 and the reference arm (dot 0) causes
the half-peak-width to be such that0w < 0ii . The dependence ofv4/v1 on the magnetic
flux 8 at fixed gate voltagevp is shown in figure 3(c); it exhibits periodic oscillations.

3.3. The phase behaviour

Now let us focus on the phase variation. With the increase of the magnetic flux8, the
open-circuit collector voltagev4 exhibits periodic oscillations (see figure 3(c)). The phase
of the lowest-order harmonic wave,ϕ0(vp), can be easily calculated from the expressions

cosϕ0 ∝
∫ 2π

0
dφ (cosφ)v4/v1

and

sinϕ0 ∝
∫ 2π

0
dφ (sinφ)v4/v1.

Then the phase shiftϕ through the dot 1 isϕ = ϕ0(vp)− ϕ0(−∞); here the phase shiftϕ
at vp = −∞ is set as 0. Figure 3(b) shows the phaseϕ versus the gate voltagevp in the
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case where0ii is independent of the statei and temperatureT = 0. The properties of the
phase variation obtained in this work are as follows.

(1) The phase behaviour is similar for all of the resonance peaks.
(2) In a single resonance peak the phase increases continuously, by a total ofπ , on

a scale of about the half-peak-width0w; this is very different from the situation for the
two-terminal phase-coherent system [2–6].

(3) An abrupt phase drop, byπ , occurs near the halfway point between two consecutive
resonance peaks.

The change is completely abrupt at temperatureT = 0, i.e. in the zero-energy regime. We
attribute this abrupt phase drop to the off-diagonal linewidths0ij of dot 1, which reflect
an indirect coupling between different states of dot 1 through the tunnelling between dot
1 and the leads. If we neglect the off-diagonal linewidth, the transport modes through the
different states of dot 1 are independent, and the amplitude of transmission through dot 1 is
simply a sum of the displaced Breit–Wigner amplitudes as used in reference [7]; the phase
drop byπ will happen on an energy scale of0ii .

Moreover, the magnitude of the oscillation of the lowest-order harmonic wave versus
the gate voltagevp appears as a series of peaks, wider than the resonance peaks (not shown
here, but easily understood from figure 2(c)). The magnitude is zero at the abrupt-drop
point of the phase variation.

Figure 4. The phaseϕ versusvp for 0ii dependent on the statei, obtained by setting
01

11 = 04
11 = 0.3, 01

ii = 04
ii = 1.104

i−1,i−1. The other parameters are the same as for figure 2.

The dotted curve shows the case where0ii is independent of the statei (01
ii = 04

ii = 0.5), for
comparison.

All of the above-mentioned results are well consistent with the experiment of Schuster
et al [7]. In particular, the steep phase drop is explained. Notice that if0ii depends on
the statei and the temperatureT is not zero, the properties of the phase variation will
undergo no qualitative change. Figure 4 shows the phaseϕ versus the gate voltagevp for
0ii dependent on the statei. The abrupt phase drop, byπ , still remains, but the location
of the abrupt-drop point will be slightly shifted, as determined by the equation∑

j

0jj /(µ1− εj ) = 0.

Figure 5 shows the phaseϕ versus the gate voltagevp for finite temperature (T 6= 0). In
this case the phase drop of aboutπ is not completely abrupt, but a rather sharp drop of the
phase still exists near the halfway point between two consecutive resonance peaks, on an
energy scale much smaller than both the half-peak-width0w and kBT . Also, in a single
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Figure 5. The phaseϕ versusvg for T 6= 0, with kBT = 0.2. The other parameters are the
same as for figure 2. The dotted curve corresponds to the case whereT = 0, and is given for
comparison.

resonance peak the phase slightly increases, slowly, and the resonance peak becomes a little
wider.

It should be pointed out that in the above numerical calculation we have neglected
the intra-dot Coulomb interaction (by settingU = 0)—not only for simplicity, but also to
check whether this abrupt phase drop is a single-electron effect. In fact, if the interaction
is included, the results will be qualitatively the same, and, in particular, the abrupt phase
drop, byπ , will still occur.

Figure 6. The phaseϕ versusvp for different values of02
0 and03

0, with 01
0 = 04

0 = 100,
andε0 = 500. The dotted, solid, and dashed curves correspond to02

0 = 03
0 = 2, 50, and 1000,

respectively. The other parameters are the same as for figure 2.

4. The crossover of the phase behaviour on going from a four-terminal system to a
two-terminal system

In this section, we turn to studying the crossover of the phase behaviour in going from the
four-terminal system to a two-terminal system. It is well know that for a two-terminal phase-
coherent system, the phase of the transmission amplitude can only take two values (either 0
or π ), and no continuous phase variation occurs. This had been predicted theoretically about
ten years ago by B̈uttiker on the basis of time-reversal invariance and current conservation
[2]. Recently Yacobyet al [1] demonstrated this behaviour by using a modified Aharonov–
Bohm ring, and renewed the interest of the theorists [3–6]. Here, on the basis of our
theoretical result, we can show that the crossover from a continuous phase variation for the
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four-terminal system to an abrupt phase variation for the two-terminal system is induced just
by changing the parameters. Notice that in the two-terminal experiment by Yacobyet al [1],
they measure the current versus the magnetic flux8 at small bias; here, the phase shiftϕ
studied is the phase of the lowest-order harmonic wave of the collector conductance dI4/dv1

versus the magnetic flux8, with ϕ(vp = −∞) set at zero. Figure 6 shows the dependence
of the phaseϕ on the gate voltagevp for different linewidths02

0, 03
0. If both 02

0 and03
0

are large, the phase will rise continuously, by a total ofπ , on an energy scale of about
the half-peak-width in a resonance peak. With the decreasing of02

0 and03
0, the couplings

between the bases (lead 2 and lead 3) and the dot 0 become more and more weakened,
and the continuous rise becomes more and more steep. In the limit of02

0 = 03
0 = 0, the

four-terminal system reduces to a two-terminal system, and the phase variation behaves as
follows.

(1) The phase abruptly rises byπ near the top of a resonance peak.
(2) The phase abruptly drops byπ near the halfway point between two consecutive

resonance peaks.
(3) As a result of (1) and (2), the corresponding points of the successive peaks are in

phase.

These theoretical results are well consistent with the experiment of Yacobyet al [4].
Moreover, with the decrease of02

0 and03
0, the resonance peaks of the collector conductance

dI4/dv1 versus the gate voltagevp change only slightly (not shown here).

Figure 7. v4/v1 versusvp for 01 > 1ε. The two solid curves correspond to01
ii = 04

ii = 5 and
01
ii = 04

ii = 20, respectively. The dotted curve corresponds to01
ii = 04

ii = 0.5. Here,8 = 0,
and the other parameters are the same as for figure 2.

5. Another manifestation of off-diagonal linewidths

Taking into consideration the off-diagonal linewidths0ij may also lead to some other
interesting predictions. Here we present one of the predictions for the four-terminal phase-
coherent system. The solid lines in figure 7 show the dependence ofv4/v1 on the gate
voltagevp for the strong-coupling case, i.e. where the linewidth0ii is larger than the interval
between two peaks (the dotted line for the weak-coupling case, i.e. small0ii , is presented
for comparison). The characteristic feature is a valley that appears near the halfway point
between two consecutive peaks. If we neglected the off-diagonal linewidth,v4/v1 would
approach 1 at all values ofvp for large0ii , due to the energy level broadening. However,
near the abrupt-drop point of the phase, the off-diagonal linewidth produces so strong an
influence that a valley is obtained.
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6. Conclusions

In summary, a four-terminal phase-coherent system is studied to mimic the experiment of
Schusteret al. Our theoretical result is in good qualitative agreement with their experiment.
In particular, we have proposed a mechanism for the abrupt phase drop; we have attributed
it to an off-diagonal linewidth, which is a single-electron effect. In addition, the crossover
of the phase behaviour from a continuous phase rise for the four-terminal system to an
abrupt phase rise for the two-terminal system is studied. Finally, a possible manifestation
of off-diagonal linewidths is predicted and discussed.
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